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Mathematical modelling of non-axisymmetric
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This paper concerns the manufacture of non-axisymmetric capillary tubing via the
Vello process, in which molten glass is fed through a die and drawn off vertically.
The shape of the cross-section evolves under surface tension as it flows downstream.
The aim is to achieve a given desired final shape, typically square or rectangular, and
our goal is to determine the required die shape.

We use the result that, provided the tube is slowly varying in the axial direction, each
cross-section evolves like a two-dimensional Stokes flow when expressed in suitably
scaled Lagrangian coordinates. This allows us to use a previously derived model for
the surface-tension-driven evolution of a thin two-dimensional viscous tube. We thus
obtain, and solve analytically, equations governing the axial velocity, thickness and
circumference of the tube, as well as its shape. The model is extended to include
non-isothermal effects.

1. Introduction
This study is motivated by the industrial manufacture of glass capillary tubing

with a specified cross-sectional shape. In particular, an interest has developed in the
production of tubing with a square or rectangular cross-section. The tubes may be
used, for example, to make medicine bottles (Pfaender 1996) or square cross-sectional
optical fibres (Wu, Somervell & Barnes 1998; Wu et al. 2000). As illustrated in figure 1,
molten glass is fed through a die and the glass tubing is drawn off vertically, before
being cut to rough length by a cutter. The rate of flow of glass through the die is
controlled by varying its temperature and hence viscosity. The profile of the cross-
section varies downstream of the die in response to surface tension, and additional
control may be achieved by applying an internal pressure (Uhlmann & Kreidl 1984).
Our ultimate aim is to solve the inverse problem of determining the die shape required
to achieve a given final (e.g. square) cross-section.

The drawing of non-axisymmetric simply connected fibres has been considered by,
for example, Denn (1980), Dewynne, Ockendon & Wilmott (1989) and Cummings &
Howell (1999). In Cummings & Howell (1999), for fibre drawing with slow variations
in the axial direction, the shape of the cross-section was found to satisfy a two-
dimensional time-dependent Stokes flow problem when expressed in suitable scaled
Lagrangian coordinates. The drawing of hollow optical fibres has also been studied
previously, for example by Fitt et al. (2001), who concentrate on axisymmetric fibres,
so the shape of the cross-section is uniformly circular. Here the main concern is
evolution in the size of the hole, and the large aspect ratio of the fibre is exploited
to obtain quasi-one-dimensional models. The extension to multiple-holed tubing is
important in the drawing of micro-structured optical fibres, and is addressed by
Voyce, Fitt & Monro (2004).
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Figure 1. Schematic diagram of the Vello process for the construction of
square capillary tubing.

Production of non-isothermal simply connected tubing has also been studied in
detail (see, for example, Lee & Jaluria 1997; Papamichael & Miaoulis 1991; Paek &
Runk 1978). However while bearing certain similarities to capillary tube manufacture,
this considers only axisymmetric fibres, which are manufactured by drawing out a
preform, with particular emphasis on the manufacture of tubing for optical fibres.
This is extended to cover hollow tubing by Fitt et al. (2002), motivated by the practical
applications of hollow optical fibres.

In this paper we are concerned with the production of tubing that is both
non-axisymmetric and hollow. To make the problem more tractable we make two
simplifying assumptions. First we suppose that the tube varies slowly in the axial
direction. This allows us to reduce the problem to a quasi-one-dimensional system of
partial differential equations governing the axial flow coupled to a two-dimensional
biharmonic problem for the crossflow, as in Cummings & Howell (1999). Our second
assumption is that the tube wall is thin compared with its circumference, so we
can exploit the theory developed by Griffiths & Howell (2007) for a thin-walled
two-dimensional annular domain of viscous fluid, or viscida (Buckmaster, Nachman
& Ting 1975; Buckmaster & Nachman 1978). By combining these ideas we obtain
a quasi-one-dimensional model that describes the axial velocity, the cross-sectional
area and circumference and a reduced time that parameterizes the evolution of the
cross-section shape.

We begin by considering the simplified constant-viscosity case to demonstrate the
modus operandi. We state the full governing equations and boundary conditions in
§ 2 before non-dimensionalizing and taking the appropriate asymptotic limits in §3.
We omit the details of the asymptotic analysis, quoting the relevant leading-order
equations from Cummings & Howell (1999) and Griffiths & Howell (2007). The
zero-Reynolds-number limit is considered in § 4. The explicit solution of the resulting
equations is used to determine the regions of parameter-space where a viable, stable
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Parameter Symbol Approx. value Units

Surface tension γ 0.3 Nm−1

Density ρ 2500 kg m−3

Viscosity µ 103–108 N s m−2

Tubing length D 1.5 m
Final circumference Ld 0.05 m
Final thickness hd 1 mm
Input speed w0 10−3 m s−1

Draw ratio R 10–30 —

Table 1. Typical parameter values for the drawing of capillary glass tubing (Graham 1987;

U. Lange, personal communication 2006; Šarboh et al. 1998; Sivko 1976).

tube can be formed, and some typical solutions are presented. In § 5, we then generalize
the problem to include non-isothermal effects, following a similar solution procedure.

2. Governing equations and boundary conditions
2.1. Geometry of the tubing

We consider tubing lying between a die at z = 0 and a final position z = D where
it is cut off, with a cross-sectional profile that we wish to specify. We concentrate in
this paper on the steady draw-down of tubing with uniform thickness in each cross-
section. Hence the tubing thickness h and the cross-sectional centreline circumference
L are functions only of z; generalizations to unsteady flows may be found in Griffiths
(2008).

In table 1 we show typical parameter values for the tube-drawing problem. Figure 2
shows a schematic diagram of the set-up. We assume that the tubing is both long and
thin, implemented specifically by defining the two parameters ε and δ,

ε =
hd

Ld

� 1, δ =
Ld

D
� 1, (2.1)

where Ld = L(D) and hd = h(D) are respectively the centreline circumference and
thickness of the tubing at the final section z = D. The typical parameter values in
table 1 give ε ≈ 0.02 and δ ≈ 0.033.

Note that ε and δ are defined in terms of the final tube profile, this geometry being
a known requirement of the problem. Since our goal is to determine the initial die
profile, defining ε and δ in terms of the geometry at the die would result in these
parameters having to be found as part of the solution, thus complicating the analysis.
However, for consistency, one should check a posteriori that the corresponding values
of ε and δ at the die are small.

2.2. Governing equations and boundary conditions

We shall begin by considering the surface-tension-driven evolution of a tube with
constant viscosity and negligible gravity. The fluid flow in the tubing is governed by
the steady Navier–Stokes equations

∇ · u = 0, (2.2)

ρ (u · ∇) u = −∇p + µ∇2u, (2.3)

where u = ui + v j + wk and p denote the fluid velocity and pressure.
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Figure 2. Definition sketch of a slender thin viscous tubing. The dot-dash line represents the
centreline of a section through the tube at a given axial position z.

If we define the positions of the inner (−) and outer (+) surfaces of the tube by the
level sets G±(x, y, z) = 0, then we may write the kinematic and dynamic boundary
conditions on the inner and outer surfaces of the tubing respectively as

u · ∇G± = 0, (2.4a)

σ · ∇G± = ∓γ κ±∇G±, (2.4b)

on G± = 0, where κ± are the mean curvatures of the outer and inner surfaces
respectively, and σ = {σij } is the usual Newtonian stress tensor, given by

σij = −pδij + µ

(
∂ui

∂xj

+
∂uj

∂xi

)
. (2.5)

The problem is closed by specifying the velocity at the two ends of the tubing, say

u = u1 at z = 0, u = u2 at z = D, (2.6)

as well as the shape of the cross-section at either z = 0 or z = D. In the forward
problem, the shape of the die at z = 0 is given; however, we are concerned with
the inverse problem in which the desired shape at z = D is prescribed and the
corresponding die shape is to be determined. Hence we suppose that G±(x, y, D) are
given functions.

3. Perturbative analysis
3.1. Non-dimensionalization

We now non-dimensionalize the system to exploit the two small parameters, ε and δ:

(x, y, z) = D(δx ′, δy ′, z′), h = εδDh′, L = δDL′, (3.1a)

u = (u, v, w) = w0(δu
′, δv′, w′), p =

µw0

D
p′, κ± =

1

δD
κ±′

. (3.1b)

Henceforth we drop the primes on dimensionless variables. We begin by performing a
systematic perturbative analysis with respect to δ, expanding all dependent variables
as regular parameter expansions of the form u′ = u(0) + δ2u(1) + · · ·, and similarly for
all other dependent variables. We omit the details of this procedure, which closely
follow that given in Cummings & Howell (1999, § § 2, 3). The resulting leading-order
equations are then simplified further by exploiting the smallness of ε.
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3.2. The axial flow equations

For simply connected fibres, the leading-order flow is extensional, so the leading-order
axial velocity w(0) = w(0)(z) is uniform over each cross-section. With superscripts
dropped, the leading-order equations governing the axial flow are (Cummings &
Howell 1999)

d

dz
(wS) = 0, (3.2)

ReSw
dw

dz
=

d

dz

(
3Sdw

dz

)
+

1

2δCa

dΓ

dz
, (3.3)

where S and Γ are the leading-order area and circumference of the cross-section
respectively. The Reynolds and capillary numbers are defined by

Re =
ρw0D

µ
, Ca =

µw0

γ
. (3.4)

It is a simple exercise to extend the derivation given by Cummings & Howell (1999
§ 3 and Appendix A and B) and hence show that (3.2) and (3.3) apply also to a hollow
tube (see Griffiths 2008, Chapter 5). In this case, the leading-order cross-sectional area
of the tube is S = S+ − S−, where S± are the cross-sectional areas bounded by
the outer and inner interfaces, while Γ is simply identified with the net circumference
Γ + + Γ − of the cross-section.

Now, under the additional assumption that the tube wall is thin, we can approximate
S and Γ by

S
ε

= S ∼ hL, Γ ∼ 2L, (3.5)

recalling that h(z, t) and L(z, t) are the dimensionless wall thickness and perimeter of
the centre-surface. Hence (3.2) and (3.3) become

d

dz
(wS) = 0, (3.6)

RewS
dw

dz
=

d

dz

(
3S

dw

dz

)
+ γ ∗ dL

dz
, (3.7)

where the relevant dimensionless surface-tension coefficient is

γ ∗ =
1

εδCa
=

γD

µw0hd

. (3.8)

3.3. The crossflow problem

So far we have the two axial flow equations (3.6) and (3.7) in the three unknowns
S, L and w. To make further progress, we must now consider the crossflow in
the (x, y)-plane. For a simply connected fibre, Cummings & Howell (1999) showed
that this flow is equivalent to a two-dimensional surface-tension-driven Stokes flow
when expressed in suitable scaled Lagrangian variables. Again, it is a straightforward
exercise to extend their analysis to describe an annular cross-section, and the details
are presented in Griffiths (2008, Appendix D). Since the crossflow problem is non-
mass-conserving due to axial stretching we first define cross-sectional variables

x∗ =
x√
S

, y∗ =
y√
S

, (3.9)
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scaled so that the area of each cross-section is constant (and equal to ε) with respect
to (x∗, y∗). Next we define the Lagrangian time variable τ (z) in the axial direction
satisfying

w
dτ

dz
=

γ ∗
√

S
, τ (1) = 0. (3.10)

Note that τ is initialized at the downstream end where the final tube shape is to be
specified.

Any material cross-section, propagating axially at speed w(z), evolves like a classical
planar Stokes flow, with surface-tension coefficient equal to ε, with respect to the new
variables, x∗, y∗ and τ . This two-dimensional problem has been analysed in the limit
of small wall thickness by Griffiths & Howell (2007), who show that the circumference
and thickness of the cross-section satisfy

L∗ =
1

1 + τ/2
, h∗ = 1 +

τ

2
(3.11)

(Griffiths & Howell 2007, equations (3.17) and (3.18)). Notice that our choice of
non-dimensionalization implies that S = L = h = 1 at z = 1, which corresponds
to τ = 0. The circumference and thickness with respect to unscaled coordinates are
hence given by

L =

√
S

1 + τ/2
, h =

√
S

(
1 +

τ

2

)
. (3.12)

Equation (3.12) may be used to substitute for τ in (3.10) to obtain

w
d

dz

(
S

L2

)
=

γ ∗

L
. (3.13)

This equation and the axial mass and momentum balances (3.6) and (3.7) give us
a closed system of ordinary differential equations for S, w and L. We will present
solutions of this problem below in § 4, but first we show how to determine the shape
of the tubing.

3.4. Evolution of the cross-section shape

It is interesting that the problem derived above depends on the shape of the cross-
section only through its area S and circumference L. The detailed dynamics of the
cross-section shape therefore decouples from that of S, w and L. Since each scaled
material cross-section satisfies a canonical two-dimensional Stokes flow problem for
the evolution of an annular domain, its evolution is in principle determined completely,
as a function of τ , by its initial shape. To map this back to physical variables we just
have to (i) rescale by a factor of

√
S and (ii) relate τ back to z using (3.10).

For thin-walled tubing, with spatially uniform thickness given by (3.12), to determine
the shape of the tubing at each axial cross-section we need only determine the position
of the centreline of the cross-section. As shown in Griffiths & Howell (2007, § § 2, 3),
this is most readily achieved using angle/arclength coordinates that are scaled with
the circumference L∗, that is,

x∗ =
X(ξ, τ )

1 + τ/2
, y∗ =

Y (ξ, τ )

1 + τ/2
, (3.14)
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where

∂X

∂ξ
= cos θ,

∂Y

∂ξ
= sin θ. (3.15)

Here, θ(ξ, τ ) denotes the angle made with the centreline of the cross-section, and
0 � ξ � 1 represents the arclength around the centreline in this coordinate system
which is scaled with the circumference.

The shape of the cross-section is thus determined parametrically by the function
θ(ξ, τ ), which is shown to satisfy the partial differential equation

∂

∂τ

[
(1 + τ/2)

∂2θ

∂ξ 2

]
= A(τ ) sin θ + B(τ ) cos θ (3.16)

(equation (3.21), Griffiths & Howell 2007). The arbitrary functions A and B are
determined as part of the solution from the boundary conditions

θ(0, τ ) = 0, θ(1, τ ) = 2π,

∫ 1

0

cos θ dξ =

∫ 1

0

sin θ dξ = 0. (3.17a–c)

Condition (3.17c) ensures that the ends are joined, while (3.17a) fixes the orientation
of the profile, eliminating the arbitrary rigid body rotation, and (3.17b) ensures that
the join is smooth.

The initial condition for (3.16) is specification of the final tubing shape θ(ξ, 0) =
θ0(ξ ). Then we wish to solve (3.16) in τ < 0 to determine the cross-sectional profile
as we move up the tubing toward the die. As discussed in Griffiths & Howell (2007,
§ 4) this problem is, surprisingly, well posed for inverse time. Indeed, for profiles with
rotational symmetry, A and B are identically zero so that (3.16) admits the exact
analytic solution

θ(ξ, τ ) =
θ0(ξ ) − 2πξ

1 + τ/2
+ 2πξ. (3.18)

For profiles with no rotational symmetry, (3.16) is readily soluble numerically.
In this paper, we will focus on the final shape given by

θ0(ξ ) =

{
0, 0 < ξ < 1/8 − π/4k,

k (ξ − 1/8) + π/4, 1/8 − π/4k < ξ < 1/8,
(3.19)

and the symmetry conditions

θ0

(
1

4
± ξ

)
≡ π

2
± θ0(ξ ). (3.20)

As shown in figure 3(a), this represents a square with rounded corners. The parameter
k ∈ (2π, ∞) measures the rounding, with the profile approaching a circle as k → 2π
and a square as k → ∞. With θ(ξ, τ ) given by (3.18), it is straightforward to integrate
(3.15) analytically and hence obtain

X =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

2 + τ

2πτ
sin

(
2πτξ

2 + τ

)
, 0 < ξ <

1

8
− π

4k
,

2 + τ

2πτ (k + πτ )

{
k sin

(
(k − 2π)πτ

4k(2 + τ )

)

− πτ sin

(
k − 2π − 8(k + πτ )ξ

4(2 + τ )

)}
,

1

8
− π

4k
< ξ <

1

8
,

(3.21)
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Figure 3. (a) The initial condition (3.19) with k = 20. (b) The evolution of the profile shown
in (a) at times τ = −0.5, −1.0, −1.25, −1.46572.

Y =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2 + τ

2πτ
cos

(
2πτξ

2 + τ

)

+
k(2 + τ )√

2πτ (k + πτ )
sin

(
π(k + πτ )

2k(2 + τ )

)
, 0 < ξ <

1

8
− π

4k
,

− 2 + τ

2πτ (k + πτ )

{
k sin

(
(k − 2π)πτ

4k(2 + τ )

)

+ πτ cos

(
k − 2π − 8(k + πτ )ξ

4(2 + τ )

)}
,

1

8
− π

4k
< ξ <

1

8
,

(3.22)

and the behaviour for all other values of ξ follows by symmetry. As shown in
figure 3(b), the profile buckles inwards for negative values of τ , pinching off at a
critical time τc ≈ −1.46572 when k = 20. The pinch-off time is an increasing function
of k, with τc → −2 as k → 2π and τc → −1 as k → ∞.

3.5. Axisymmetric tubing

Before presenting solutions, we now briefly show how our governing equations
simplify when the cross-section is circular, for comparison with previous models
of axisymmetric tube drawing. If the final cross-sectional centreline is circular then
θ0(ξ ) = 2πξ , and (3.18) implies that θ(ξ, τ ) ≡ 2πξ so, as expected, the profile remains
circular throughout the tube. In this case, the cross-section area, thickness and
circumference are related to the inner and outer radii, r− and r+ respectively, by

εS = π(r2
+ − r2

−), εh = r+ − r−, L = π(r+ + r−). (3.23)

Hence the axial flow equations (3.6) and (3.7) take the form

d

dz
(w(r2

+ − r2
−)) = 0, (3.24)

Re w(r2
+ − r2

−)
dw

dz
=

d

dz

(
3(r2

+ − r2
−)

dw

dz

)
+ εγ ∗ d

dz
(r+ + r−) . (3.25)
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Next, from the governing equation (3.13) for L, we deduce that r± satisfy

w
d

dz

(
r2
+ − r2

−

(r+ + r−)2

)
=

εγ ∗

r+ + r−
, (3.26)

and use of (3.24) then leads to the equations

d

dz
(wr2

+) =
d

dz
(wr2

−) = −εγ ∗r+r−

r+ − r−
. (3.27)

Equations (3.24), (3.25) and (3.27) for r+, r− and w are identical to those given in Fitt
et al. (2002), confirming that our model for S, w and L is mathematically equivalent
to the axisymmetric model.

4. The slow-flow limit
4.1. Leading-order solution

We have seen in § 3.2 and § 3.3 that inertia is important only in the axial flow problem.
The typical parameter values in table 1 give γ ∗ ∼ 10−3–102 and Re ∼ 10−8–10−3, and
we therefore concentrate henceforth on the slow-flow limit Re → 0, while retaining
γ ∗. We impose the boundary conditions

w(0) = 1, w(1) = R, S(1) = 1, L(1) = 1, (4.1a–d)

which follow from our choice of non-dimensionalization and define the draw ratio R,
an important control parameter.

With Re = 0, we may integrate (3.6) and (3.7) to give

wS = R, (4.2)

3S
dw

dz
= 6bR − γ ∗L, (4.3)

where b is a constant of integration; physically, 6b represents the net dimensionless
tension applied to the tube. Equation (4.2) allows S to be eliminated from the problem
so that (3.13) and (4.3) may be written as two first-order ordinary differential equations
for L and w, namely

dw

dz
=

(6bR − γ ∗L) w

3R
, (4.4)

dL

dz
= − (3bR + γ ∗L) L

3R
. (4.5)

These are readily solved, subject to the boundary conditions (3.1b,d ), to give

w =
3bR2e−2b(1−z)

γ ∗ + 3bR − γ ∗eb(1−z)
, (4.6)

S =
e2b(1−z)

3bR

(
γ ∗ + 3bR − γ ∗eb(1−z)

)
, (4.7)

L =
3bReb(1−z)

γ ∗ + 3bR − γ ∗eb(1−z)
. (4.8)

We can then infer the tube wall thickness h from (3.5) and the Lagrangian time
variable τ from (3.12):

h(z) =
S(z)

L(z)
, τ (z) = 2

(√
S(z)

L(z)
− 1

)
. (4.9)
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Figure 4. Scaled tension b versus draw ratio R for values of the surface tension parameter
γ ∗ = 0, 0.25, 0.5 . . . , 2.5. The minimum and critical draw ratios, Rmin and Rc are shown as
dashed lines.

The centreline of each cross-section is thus given parametrically by(
x

y

)
= L(z)

(
X(ξ, τ (z))

Y (ξ, τ (z))

)
, (4.10)

with (X(ξ, τ ), Y (ξ, τ )) given by (3.21).

4.2. Parametric analysis

It remains to determine the constant b from the boundary condition (3.1a), which
leads to the equation

R2 − e2bR + γ ∗e2b eb − 1

3b
= 0. (4.11)

For a given γ ∗, we can thus use (4.11) to obtain the scaled tension b as a function
of the draw ratio R. The resulting behaviour of b versus R is shown in figure 4 for
various values of γ ∗.

As γ ∗ → 0, the solution of (4.11) reduces to

b = 1
2
lnR when γ ∗ = 0. (4.12)

For each positive value of γ ∗, we observe that there is a minimum draw ratio
Rmin(γ

∗) below which no steady solution exists. When R exceeds Rmin, there are two
possible values of b corresponding to each R, and hence two possible solutions of
the boundary-value problem. We illustrate their typical behaviour in figure 5, where
we show w, S, L and h as functions of z when γ ∗ = 2 and R = 2. In this case
the two possible values of b are b ≈ 0.66801 and b ≈ 1.82053. We observe that the
larger value of b gives physically implausible behaviour, with the velocity w initially
decreasing sharply near the die before increasing to its given value of 2 at z = 1.
Furthermore, the circumference L grows alarmingly near z = 0 (to approximately
117.736 which is off the scale of the graph), while the thickness becomes close to zero.
It seems unlikely that such solutions could be stable, and we infer that we should
choose the lower branch of the (R, b) curves shown in figure 4. Indeed, it is this lower
branch that converges to the zero-surface-tension limit (4.12) as γ ∗ → 0.
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Figure 5. Axial velocity w, cross-section area S, tube circumference L and thickness h versus
axial position z with γ ∗ = 2, R = 2 and b = 0.66801 (solid), b = 1.82053 (dashed).

By choosing the lower of the two available values of b, we can now obtain a unique
solution for any given γ ∗ and R, provided R > Rmin(γ

∗). However, it is equally possible
in practice to control the tension applied to the tube, in which case the draw ratio is
determined by the problem. Since the lower branch of figure 4 is non-monotonic, we
may still face non-uniqueness in such problems where b is specified rather than R.
In figure 4, we show as a dotted line the critical value R = Rc(γ

∗) corresponding to
the minimum value of b. For Rmin < R < Rc, we see that the tension is a decreasing
function of the draw speed, and this configuration surely cannot be stable. (Such
instabilities are considered in Wylie, Huang & Miura 2007.) We therefore hypothesize
that the lower branch is stable only when R > Rc(γ

∗), in which case we have a
well-defined invertible mapping between R and b.

To limit further the range of possible solutions, we note that when γ ∗ < 3/4 there
is a range of values of R for which b is negative. We would expect a positive tension
to be required to extrude the fluid from the die. Moreover, a negative tension would
probably lead to a sinuous instability in the tube (Howell 1996), and we therefore
exclude solutions with b < 0.

We show the (γ ∗, R) parameter-space in figure 6. The minimum draw ratio Rmin(γ
∗),

given parametrically by

Rmin = e2b (b − 1)eb + 1

(3b − 1)eb + 1 − 2b
, γ ∗ = 6b2e2b (b − 1)eb + 1

((3b − 1)eb + 1 − 2b)2
, (4.13)

is plotted as a dotted curve. The critical value Rc(γ
∗), corresponding to the minimum

value of b, satisfies the implicit equation

γ ∗ =
3Rc ln(2Rc)

4
(√

2Rc − 1
) (4.14)
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Figure 6. Parameter-space of draw ratio R versus surface tension parameter γ ∗. The dotted
line shows the minimum draw ratio Rmin(γ

∗). The dashed line shows the critical value Rc(γ
∗)

at which the tension b is minimized. The dot-dashed curve shows where the Lagrangian time
variable τ is equal to −1 at z = 0. The solid curve delineates the region where b is negative.

and is shown as a dashed curve. Finally, the region leading to negative values of b is
bounded by the solid curve

γ ∗ = 3R(1 − R). (4.15)

This intersects the curve R = Rc(γ
∗) at γ ∗ = 3/4, R = 1/2 and is tangent to R =

Rmin(γ
∗) at γ ∗ = 12/25, R = 1/5.

We have argued that physically meaningful and stable solutions can exist only
where R > Rc(γ

∗) and b > 0. The parameter-space may be further restricted by the
requirement that the tube does not pinch off. As illustrated in figure 3(b), there is a
finite critical value of τ = τc ∈ (−2, 0) at which the tube cross-section self-intersects,
and, to avoid this, we must insist that τ (0) > τc. The curve in the (γ ∗, R)-plane on
which τ (0) = τc is given by

γ ∗ =
3R

(
1 − (1 + τc/2)2/3

)
2

(√
R(1 + τc/2)−1/3 − 1

) ln

(
R

(1 + τc/2)2/3

)
, (4.16)

which is identical to (4.14) when τc = 1/
√

2 − 2 ≈ −1.29289. Hence our previously
imposed condition R > Rc(γ

∗) ensures in addition that τ (0) > 1/
√

2 − 2. This is
sufficient for the shape given in figure 3(a), for which τc ≈ −1.46572, but (4.16) leads
to a stronger condition for larger values of τc. For example, if τc = −1, then R must
lie above the dot-dashed curve shown in figure 6.

4.3. Typical solutions

In summary, for slow flow we have found explicit analytical solutions for the extrusion
of a slowly varying thin-walled tube. Figure 6 indicates the values of the draw ratio
and the dimensionless surface tension for which a viable tube can be established.
Within this parameter domain, the problem admits a unique solution, and we are able
to predict explicitly the die shape corresponding to any given final tube cross-section.
In figure 7, we show the three-dimensional profile leading to the final shape shown
in figure 3 with R = 2, γ ∗ = 2. These parameter values are purely illustrative, and
this solution corresponds to the solid curves in figure 5. The right-hand side of the
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Figure 7. Three-dimensional centreline profile with γ ∗ = 2, R = 2 and k = 20, as well as
cross-sections through the tube with ε = 0.05.

figure shows the die shape required to achieve the desired final shape and how the
cross-section evolves along the tube.

In figure 8, we show further illustrative solutions, with γ ∗ = 2 and increasing values
of R. The velocity and area behave monotonically as expected, but the circumference
is surprisingly insensitive to variations in the draw ratio. With a low draw ratio R = 2,
the thickness increases as surface tension causes the tube to contract and thicken. On
the other hand, the largest draw ratio R = 5 causes the tube to thin monotonically due
to axial stretching. At intermediate values, the competition between surface tension
and stretching leads to a thickness that initially increases before decreasing near the
exit.

5. The temperature-dependent problem
5.1. Governing equations

Now we show how the model derived above may be extended to describe non-
isothermal tube drawing. Temperature variations are extremely important in practice
because of their strong influence on the glass viscosity. Table 2 illustrates typical
parameter values for this problem. The specific emissivity, εr , is a material constant
that depends on the emissivity of the fluid as well as the geometry and surroundings
of the experimental set-up (see, for example, Fitt et al. 2002; S̆arboh, Milinković &
Debeljković 1998). In reality, cp , kc, εr , α and the surface tension, γ , all vary with
temperature. In practice, however, though the viscosity of the glass may vary by
orders of magnitude over a relatively modest temperature range, these parameters
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Figure 8. Axial velocity w, cross-section area S, tube circumference L and thickness h versus
axial position z with γ ∗ = 2 and R = 2, 3, 4, 5.

Parameter Symbol Approx. value Units

Input temperature1 T0 1300 K

Specific heat2 cp 770 J kg−1 K−1

Thermal conductivity3 kc 1.1 W m−1 K−1

Stefan–Boltzmann constant2 σ 5.67 × 10−8 Wm2 K−4

Specific emissivity2 εr 0.9 —
Ambient temperature1 Tam 400 K
Input viscosity1 µ0 2 × 103 Pa s
Temperature-viscosity parameter4 α 23 —

Table 2. Typical thermal parameter values for the drawing of capillary glass tubing. 1) U.

Lange, personal communication (2006), 2) S̆arboh et al. (1998), 3) Huang et al. (2003),
4) National Institute of Standards & Technology (1991).

are only weak functions of temperature (see, for example, Lee & Jaluria 1997). We
therefore assume that these parameters are constant.

The fluid temperature is determined by conservation of energy via a control volume
approach, accounting for diffusive and convective heat transfer, as well as radiative
heat transfer to and from the surroundings, while neglecting viscous dissipation. The
tubing is assumed to be sufficiently thin for the leading-order temperature T to be
uniform over the cross-section, that is, we assume that the Biot number, Bi = chd/kc,
where c is the heat transfer coefficient, is small. Then T (z) satisfies the dimensional
equation (Huang et al. 2003, 2007)

ρcpwS
dT

dz
=

d

dz

(
kcS

dT

dz

)
− σεrL

(
T 4 − T 4

am

)
, (5.1)
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where the respective terms represent axial thermal convection, diffusion and radiative
heating to and from the surroundings.

When we non-dimensionalize the temperature T with its value T0 as it exits the die,
the dimensionless version of (5.1) is

wS
dT

dz
=

1

Pe

d

dz

(
S

dT

dz

)
− CL

(
T 4 − T 4

a

)
, (5.2)

where

Pe =
ρcpw0D

kc

(5.3)

is the Péclet number, and the other two dimensionless parameters are

C =
σεrT

3
0

ερcpw0

, Ta =
Tam

T0

. (5.4)

The relationship between the viscosity and temperature of the glass depends largely
on the specific chemical composition (see, for example, Karapet’yants 1960). In this
paper we limit our attention to the simple exponential relation

µ = µ0e
α(1−T/T0), (5.5)

where µ0 is the viscosity at temperature T0. The dimensionless parameter α is
typically large, reflecting the extreme sensitivity of µ to variations in T . The physical
applicability of relation (5.5) is considered in Karapet’yants (1960), and it is used in
many mathematical models of tube drawing, for example S̆arboh et al. (1998). The
dimensionless version of (5.5) is

µ = eα(1−T ), (5.6)

where µ is non-dimensionalized with its initial value µ0.
Since T is uniform over each cross-section, it follows that µ is likewise a function

only of z. It is then straightforward to generalize the axial flow equations (3.6) and
(3.7) to

d

dz
(wS) = 0, (5.7)

ReSw
dw

dz
=

d

dz

(
3µS

dw

dz

)
+ γ ∗ dL

dz
, (5.8)

with Re and γ ∗ now defined in terms of µ0 rather than µ.
Because µ is constant in each cross-section, it is again possible to transform the

crossflow problem into a standard two-dimensional Stokes flow problem, now defining
the reduced Lagrangian time variable τ by

w
dτ

dz
=

γ ∗

µ
√

S
, τ (1) = 0. (5.9)

Otherwise, the transformation given in § 3.3 may be followed exactly, resulting in the
equation

w
d

dz

(
S

L2

)
=

γ ∗

µL
. (5.10)

5.2. Leading-order equations

The parameter values in tables 1 and 2 suggest that Pe ∼ 103, γ ∗ ∼ 102 and C is
order one, while T 4

a is inevitably small, so we will neglect axial thermal diffusion and
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radiative heating from the surroundings. We note that relatively small variations in
input temperature produce dramatic changes in input viscosity and hence the value
of γ ∗. The parameter α is moderately large, but will be treated as order one for the
moment. We also take the limit Re → 0 as in § 4.

The boundary conditions are

w(0) = 1, w(1) = R, S(1) = 1, L(1) = 1, T (0) = 1. (5.11a–e)

With µ(z) given by (5.6), a similar procedure to § 4.1 yields the analogous equations
to (4.4) and (4.5),

dw

dz
=

(6bR − γ ∗L) weα(T −1)

3R
, (5.12)

dL

dz
= − (3bR + γ ∗L) Leα(T −1)

3R
, (5.13)

while, with Pe → ∞ and Ta → 0, (5.2) simplifies to

R
dT

dz
= −CLT4. (5.14)

The tube thickness h and cross-sectional area S may be recovered from the relations

h =
R

wL
, S =

R

w
, (5.15)

while the evolution in the cross-section shape is determined by

τ = 2

( √
R

L
√

w
− 1

)
. (5.16)

5.3. Solution

By dividing (5.12) and (5.13), we obtain the first integral

w =
R (3bR + γ ∗L)3

L2 (3bR + γ ∗)3
, (5.17)

which allows us to eliminate w from the problem. From the initial condition (5.11a), we
obtain an equation for the dimensionless tension b in terms of the initial circumference
L0 = L(0):

b =
γ ∗(L0R

1/3 − L
2/3
0

)
3R

(
L

2/3
0 − R1/3

) . (5.18)

It remains only to solve for L and T , subject to the boundary conditions

L(0) = L0, T (0) = 1, L(1) = 1. (5.19a–c)

With b given by (5.18), we can solve (5.13) and (5.14) as an initial-value problem,
starting from z = 0 and using L0 as a shooting parameter to satisfy the final
condition (5.19c).

Further analytical progress may be made by dividing (5.13) and (5.14) to solve for
L in terms of T in the form

L =
L

2/3
0

L
2/3
0 − R1/3

{
(L0 − 1) e−γ ∗Fα(T )/3C −

(
L

1/3
0 R1/3 − 1

)}
. (5.20)
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The function Fα(T ) is defined by

Fα(T ) =

∫ 1

T

eα(t−1)

t4
dt =

1

6

{
α3e−α(Ei(α) − Ei(αT ))

+
eα(T −1)

T 3
(2 + αT + α2T 2) − (2 + α + α2)

}
, (5.21)

where Ei denotes the exponential integral

Ei(α) = −−
∫ ∞

−α

e−t

t
dt. (5.22)

The condition (5.19c) leads to a relation between L0 and the final temperature
T1 = T (1), namely

L0 =
√

R exp

(
γ ∗Fα(T1)

2C

)
. (5.23)

Next we solve (5.14) for T (z) in the implicit form

Cz

R
=

(
1 − R1/3

L
2/3
0

)∫ 1

T

t−4 dt

(L0 − 1) e−γ ∗Fα (t)/3C − (L1/3
0 R1/3 − 1)

, (5.24)

and putting z = 1 we obtain the transcendental equation

C

R

(
1 − e−γ ∗Fα(T1)/3C

)−1

=

∫ 1

T1

t−4 dt

(eγ ∗Fα(T1)/2C
√

R − 1)e−γ ∗Fα (t)/3C − (eγ ∗Fα(T1)/6C
√

R − 1)
. (5.25)

The problem is solved completely once we have determined T1 from (5.25).
Equations (5.24) and (5.20) determine T (z) and L(z) parametrically, and we can
then obtain h(z) and S(z) from (5.15) and τ (z) from (5.16), which may be rearranged
to

1 +
τ

2
=

√
R

L
√

w
=

(
3bR + γ ∗

3bR + γ ∗L

)3/2

= exp

(
γ ∗

2C
(Fα(T ) − Fα(T1))

)
. (5.26)

5.4. Parametric analysis

Now the solution depends on two more dimensionless parameters α and C in addition
to γ ∗ and R, and the task of mapping out parameter-space is therefore somewhat
more onerous. The general structure is similar to that encountered in § 4. For fixed
values of α, C and γ ∗, there is a minimum value of R below which (5.25) has no
solution and above which there are two possible solutions for T1. This behaviour is
illustrated in figure 9(a), where we plot the dimensionless tension b, determined from
(5.18) and (5.23) after solving (5.25) for T1, versus the draw ratio R. Here we fix
γ ∗ = 2, α = 1 and various values of C between 0 and 1, and we only plot practically
relevant values of R > 1. When C = 0, T ≡ 1 and we obtain the isothermal solution
from § 4. As C increases, the upper branch of solutions diverges rapidly from the
C = 0 curve, while the close-up in figure 9(b) shows that the tension on the lower
branch increases more gradually with increasing C. This is unsurprising, since C

controls the rate at which the tube radiates heat: as the glass cools, its viscosity
grows rapidly and the tension needed to achieve a given draw ratio thus increases.
As argued in § 4.2, we expect only the lower branch to be stable.
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C = 0, 0.125, 0.25, 0.5, 1, 2. (b) C = 2 and α = 0, 1, 2, 3, 4.

Now, to identify the region of parameter-space where a viable tube can be formed,
the easiest condition to impose is a limitation on τ (0) for the tube not to pinch off.
If we define

λ = − ln (1 + τ (0)/2), (5.27)

where τ (0) is held fixed, then

γ ∗ =
2λC

Fα(T1)
, (5.28)

and T1 is determined as a function of λ, R, α and C by the transcendental equation

C

R
= (1 − e−2λ/3)

∫ 1

T1

t−4 dt(
eλ

√
R − 1

)
e−2λFα (t)/3Fα (T1) −

(
eλ/3

√
R − 1

) . (5.29)

We display the results of this approach in figure 10, where we plot the curve in
the (γ ∗, R)-plane on which τ (0) = τc ≈ −1.46572, the critical time at which our
illustrative example in figure 3 pinches off; thus τ (0) > τc ≈ −1.46572 only if R lies
above this curve. In figure 10(a) we hold α = 1 and vary C through the values used
previously in figure 9. As we increase C, the viable region of parameter-space grows.
Again this is due to the increase in viscosity, reducing the effect of surface tension
which drives the evolution in the cross-section shape.

A similar effect is observed in figure 10(b), where we set C = 1 and vary α. When
α = 0, although the temperature is not constant, the viscosity does not vary with T
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Figure 11. Axial velocity w, temperature T , tube circumference L and thickness h versus
axial position z with γ ∗ = 4, R = 5, C = 5 and α = 0, 1, 2, 3, 4, 5.

so the mechanical behaviour of the tube is identical to the isothermal solution. As α

increases, the viscosity increases and the cross-section shape thus evolves more slowly,
which again makes the tube less likely to pinch off.

5.5. Typical solutions

In figure 11, we show typical solutions for w, T , L and h with γ ∗ = 4, R = 5,
C = 5 and α = 0, 1, 2, 3, 4, 5. When α = 0, the velocity, given by (4.6), grows roughly
exponentially with z. As α increases, the viscosity becomes an increasing function of
z. This penalizes stretching towards the downstream end of the tube and makes the
variations in w closer to linear. This effect is also evident in the behaviour of L. As α

increases, the variations in L are localized near z = 0 where the viscosity is relatively
low. When α = 0, the tube thickness h initially increases under surface tension before
decreasing near the exit, but, for larger values of α, viscous effects dominate so h

decreases throughout the tube.
In figure 12, we show the analogous solutions for larger, more realistic, values of α.

As α increases, w, L and h become virtually constant outside a boundary layer near
the die. Meanwhile, the temperature approaches

T (z) ∼
(

1 +
3Cz

R

)−1/3

(5.30)

which is obtained from (5.14) with L ∼ 1 and shown as a dashed line in figure 12.

5.6. Asymptotic analysis

In this section we exploit the largeness of the material parameter α for glass. This
asymptotic limit is also examined for the stretching of heated threads in Howell et al.
(2007). From (5.13), we deduce that dL/dz is exponentially small when T < 1. This
confirms the results seen in figure 12 that L ∼ 1 and T is given to leading order by
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Figure 12. Axial velocity w, temperature T , tube circumference L and thickness h versus
axial position z with γ ∗ = 4, R = 5, C = 5 and α = 10, 20, 30, 40, 50.

(5.30). These approximations fail in a boundary layer near z = 0, where

z =

(
R

αC

)
Z, T = 1 − φ

α
. (5.31)

To obtain a sensible balance, we also require b to be asymptotically large, and a
distinguished limit occurs when we rescale as follows:

b =

(
αC

R

)
B, γ ∗ = (3αC) ς. (5.32)

The interpretation of these is that an enhanced viscosity leads to a higher tension and
requires a higher value of γ ∗ for surface tension to have a significant influence. This
is consistent with the observation that γ ∗ may be large in practice.

Following the scalings (5.32), equations (5.13) and (5.14) become

dL

dZ
= −(B + ςL)Le−φ,

dφ

dZ
= L, (5.33)

to leading order in 1/α, with the initial conditions

L(0) = L0, φ(0) = 0. (5.34)

By dividing the two equations (5.33), we find the first integral

φ = − ln

{
1 − 1

ς
ln

(
B + ςL0

B + ςL

)}
, (5.35)

and L(Z) therefore satisfies

dL

dZ
= −L (B + ςL)

{
1 − 1

ς
ln

(
B + ςL0

B + ςL

)}
. (5.36)
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From the matching condition L → 1 as Z → ∞, we deduce that

B + ςL0

B + ς
= eς , (5.37)

and the exact equation (5.18) for b leads to a relation for the initial circumference,
namely

L0√
R

= e3ς/2 = eγ ∗/2αC. (5.38)

As α → ∞, with γ ∗ and C held fixed, we deduce that L0 →
√

R, and, indeed, we
observe in figure 12 that L(0) approaches

√
5 ≈ 2.236 as α increases.

This asymptotic analysis has the important result of predicting the size of the region
over which geometrical variations in the tube will occur, namely z = O(R/αC). If
this is too small, specifically if

R

αC
= O(δ), (5.39)

then our assumption of slow variation in the axial direction will fail. We note that
very rapid necking of the tube near the die may be undesirable in practice, since
it would lead to extreme sensitivity of the solution to the experimental conditions.
The regions of parameter-space where our asymptotic theory breaks down should
therefore probably be avoided anyway.

We also note that the boundary-layer thickness increases with increasing draw
ratio, so the result (5.38) will break down when R is sufficiently large. Since the draw
ratio is typically large in practice, it is worthwhile to explore further this distinguished
asymptotic limit, in which the boundary layer fills the entire tube and T ∼ 1 to leading
order everywhere. We note from (5.38) that L0 = O(

√
R) as R → ∞ and therefore

rescale

L =
√

R�, L0 =
√

R�0, (5.40)

so that (5.18) becomes

b =

(
αCς√

R

)
�0

�
2/3
0 − 1

(5.41)

to leading order in 1/R, and hence (5.36) reduces to

d�

dz
= −

(
αC√

R

)
�

(
� +

�0

�
2/3
0 − 1

) {
ς + ln

((
�

2/3
0 − 1

)
� + �0

�
5/3
0

)}
. (5.42)

The boundary conditions

�(0) = 1, �(1) = R−1/2, (5.43)

thus lead to the equation

αC√
R

=

∫ 1

R−1/2

d�

�

(
� +

�0

�
2/3
0 − 1

) {
ς + ln

((
�

2/3
0 − 1

)
� + �0

�
5/3
0

)} , (5.44)

for �0.
The integral on the right-hand side diverges as R → ∞, and the rate at which it

does so depends on the relation between �0 and ς . We can recover the boundary-layer
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solution found above by writing

�0 ∼ e3ς/2 +
�

(1)
0√
R

+ · · · , (5.45)

in which case (5.44) becomes an equation for �
(1)
0 , namely

αC

R
= −3 (eς − 1)

2�
(1)
0

ln

(
1 − 2�

(1)
0

3 (eς − 1)

)
. (5.46)

This verifies that (5.44) is consistent with (5.38) when αC/R is order one.
Otherwise, �0 is not asymptotically close to e3ς/2 and the integral in (5.44) has only

a logarithmic singularity as R → ∞. To investigate the behaviour more closely, we
subtract off the singular part of the integrand and introduce the shorthand

� = ς − 2

3
ln �0 =

γ ∗

3αC
− 1

3
ln

(
L2

0

R

)
, (5.47a)

Λ =
�

2/3
0 − 1

�0

=
R1/6

(
L

2/3
0 − R1/3

)
L0

, (5.47b)

to write (5.44) in the form

αC√
R lnR

=
Λ

2�

{
1 − 2

lnR

∫ Λ

0

�ξ + (1 + ξ ) ln (1 + ξ )

ξ (1 + ξ )(� + ln (1 + ξ ))
dξ

}
, (5.48)

after neglecting terms of order R−1/2.
We infer that the distinguished limit in which all effects balance along the entire

tube occurs when both ς and the parameter αC/
√

R lnR are order one. If we are
content to discard the logarithmically small term in (5.48), we find that �0 satisfies
the equation

αC√
R lnR

=
3
(
�

2/3
0 − 1

)
2�0 (3ς − 2 ln �0)

. (5.49)

We note that the right-hand side of (5.49) is a non-monotonic function of �0 when
ς > 2 ln 3 + 8/3 ≈ 4.864, which once again raises the possibility of non-uniqueness.
However, we do not bother to analyse the relation (5.49) further, since we do not
expect it to give a reliable approximation to (5.48) at realistic values of R.

In figure 13, we illustrate the asymptotic structure revealed in this section by
plotting the circumference L versus z with C = 1 and increasing values of α, while
γ ∗ and R are varied to keep ς = 1/2 and αC/

√
R lnR = 3. Even for large values of

α, variations in L occur throughout the tube, rather than just in a boundary layer
like those seen in figure 12. Furthermore, when we plot � = L/

√
R rather than L, the

graphs appear to converge near z = 0 as α increases (although they must differ as
z → 1, where L → 1).

In figure 14 we show the three-dimensional tube profile and cross-sections through
the tube corresponding to the largest value of α in figure 13, that is with α = 50,
C = 1, R = 26.104 and γ ∗ = 75. As we have seen earlier, these values are by no
means unrealistic in practice. Again we observe that variations in L and h occur
all along the tube, but it is clear that the tube geometry evolves significantly more
rapidly near the top, where the glass is hotter. In particular, the cross-sectional shape
is already very close to its final square configuration at z = 1/4.
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Figure 13. Tube circumference L and scaled circumference � = L/
√

R versus axial position
z with C = 1, γ ∗ = 3α/2 and α = 10, R = 4.673; α = 20, R = 9.107; α = 30, R = 14.203;
α = 40, R = 19.886; α = 50, R = 26.104.
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Figure 14. Three-dimensional centreline profile with γ ∗ = 75, R = 26.104, α = 50, C = 1
and k = 20, as well as cross-sections through the tube with ε = 0.05.

The conclusion of our asymptotic analysis is that, when α and R are large, the
behaviour of the solution is governed by two key parameters, namely αC/

√
R lnR

and γ ∗/Cα. When αC/
√

R ln R is large, geometrical variations in the tube take place
in a boundary layer near z = 0; if it is small, then thermal effects have a negligible
influence on the shape of the tube. On the other hand, the importance of surface
tension is measured by γ ∗/Cα. If this parameter is small, then surface tension is
negligible, and the cross-section shape is approximately conserved along the tube. If
it is large, then dramatic changes in cross-section shape will occur along the tube,
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and pinch-off at z = 0 will be increasingly likely, thus eliminating the existence of a
physically realizable die shape.

6. Conclusions
This paper concerns the steady drawing of a slowly varying three-dimensional

non-axisymmetric tube, evolving under the action of surface tension. The assumption
of slow variations in the axial direction allowed us to use a quasi-one-dimensional
model, in which the tube is characterized by its cross-section area S and centreline
circumference L, and the axial velocity w, all of which are functions only of z.
In addition, we exploited the result that each material cross-section evolves as a
two-dimensional unsteady Stokes flow when expressed in suitable scaled Lagrangian
coordinates. By assuming that the tube walls are thin, we were thus able to determine
the evolution of the circumference and shape of the cross-section using the model
for a two-dimensional annular viscous tube derived previously by Griffiths & Howell
(2007). We thus solved an inverse problem, in which the final shape of the tube is
specified, and the die shape required to produce it is found as part of the solution.

For isothermal tube drawing, with negligible inertia, we found that the problem
can be solved explicitly, with just one parameter b, representing the dimensionless
tension in the tube, remaining to be determined from a transcendental equation. We
discovered that, depending on the draw ratio and the surface tension coefficient, there
may be two or no solutions for b, and we mapped out the regions of the (γ ∗, R)
parameter-space where stable, viable solutions are likely to exist. In our sample
solutions, the most striking result is the variation in the tube thickness h, which
evolves under a competition between surface tension and axial stretching. When these
effects are in balance, h behaves non-monotonically, first increasing as the tube exits
the die before decreasing again near the exit.

We then extended the model to include temperature variations, which are coupled
to the mechanical behaviour of the tube via the strongly temperature-dependent
viscosity. Again, the problem admits analytic solution, albeit in an awkward implicit
form, and is fully determined by the solution of a single transcendental equation.
Now there are four dimensionless parameters to consider, but the structure of
parameter-space is qualitatively similar to that encountered in the isothermal limit. As
the surface tension increases, an increasing draw ratio is required to prevent the tube
from pinching off. Increasing either the radiative cooling or the sensitivity of the
viscosity to temperature variations has the effect of increasing the viscosity along
the tube and thus delays the occurrence of pinch-off.

In practice, the viscosity of glass can vary by many orders of magnitude over the
temperature ranges of interest, and the sensitivity parameter α is therefore typically
large. We found that, as α increases, the geometrical variations in the tube become
localized in a small boundary layer near the die. This effect is counteracted by also
increasing the draw ratio, and we found that αC/

√
R lnR is the critical parameter

controlling the length of the boundary layer. Our analysis also revealed that γ ∗/αC

determines the influence of surface tension on the tube shape.
If the tube cross-section does indeed evolve very rapidly, then our slowly varying

assumption is called into question. In such cases, there will be a region near the
die in which the tube is fully three-dimensional, although still thin. The behaviour
in this region may be described using the ‘viscous shell’ theory of Pearson & Petrie
(1970a ,b) and Howell (1996), and then matched with our slowly varying model. We
note, however, that quasi-one-dimensional models of fibre drawing have historically
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proved extremely successful, often giving remarkably accurate results even outside
their formal limits of applicability.

In this paper, we have only considered steady tube drawing, although it is
straightforward to generalize our equations to include time variations. Since we
have encountered both non-existence and non-uniqueness of solutions, it would be
worthwhile exploring their linear stability. We have found generically that the draw
ratio R must exceed some critical lower bound for a physically sensible solution to
exist. However, it is well-known that an excessive draw ratio may lead to the so-called
‘draw resonance’ instability (Pearson & Matovich 1969), and this may impose further
restrictions on the parameter values for which a tube can be successfully formed.

In refining our initial simple model, we concentrated on non-isothermal effects,
which are likely to be particularly significant in practice due to the consequent large
variations in viscosity. However, there are many further physical effects that could
also be included. For example, it is easy to replace the viscosity-temperature relation
(5.5) with some other empirical formula such as the Vogel–Fulcher–Tammann law
(Krause & Loch 2002). We have found that such generalizations do not significantly
alter the behaviour of the solutions presented in this paper.

We have not considered radiative heat transfer in the glass. This is a
formidable problem in general, but is often simplified using the so-called Rosseland
approximation, which leads to a nonlinear diffusion equation for the temperature
T (see, for example Myers 1989; Paek & Runk 1978). This may well decrease the
effective Péclet number and invalidate our conclusion that axial thermal diffusion is
negligible.

Finally, we note that additional control over the tube may be achieved by
pressurizing the hole, a technique used in axisymmetric tube drawing to help prevent
closure of the hole (Fitt et al. 2001, 2002). Griffiths & Howell (2007) have shown how
to incorporate an applied pressure in the two-dimensional crossflow equation (3.16),
and it is straightforward in principle to apply their results to a slowly varying tube
as demonstrated in this paper.
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